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Introduction

● Fog computing brings enterprise systems closer to 
the cloud [1, 2, 3]

● Layered architecture of the IoT-Fog-Cloud 
ecosystem performs efficient application  
execution [4, 5]

● Master-worker framework is introduced to 
accelerate the efficiency of the system [6] 
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Introduction (cont.)

● Recent trends include growing interest in using 
microservice architecture to address Fault 
Tolerance in IoT ecosystem [7]

● A fault tolerance mechanism to protect the 
essential master fog node is needed to avoid a 
single point of failure for microservice based 
architecture 

4



Research Objectives

● RO1: To select contingent master fog nodes based 
on a periodic  computational resource capacity 
estimation strategy in Fog-IoT ecosystems

● RO2: To prepare contingent master fog nodes for 
efficient enactment of master fog reallocation 
when a failure occurs
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Our Contributions

● We design a resilient master fog node selection 
process that provides seamless execution in a fog-
IoT ecosystem

● We implement our developed master fog selection 
algorithm that ensures uninterrupted services in 
the case of master fog node failure

● We experiment with practical data and validate 
that our system can run smoothly and seamlessly 
in a fault-tolerant environment 6



Figure 1: Overview of our Fault Tolerant Framework
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Background

● A fault-tolerant architecture for IoT applications 
that uses master-citizen orchestration was 
proposed [6]

● Reduced Variable Neighborhood Search (RVNS)-
based framework was introduced for fault-tolerant 
data transmission [8]

● A framework based on microservice architecture 
providing reactive and proactive fault tolerant 
support was developed [9] 8



Background (Cont.)

● An architecture distributed over four levels (cloud-
fog-mist-dew) was introduced based on IoT 
device’s processing power and distance [10]

● Issues of reliability and fault tolerance in IoT based 
smart cities were investigated [11]

● IoT-Edge-Cloud federation architecture for multi-
cluster IoT applications was developed by adapting 
Cloud-Edge-IoT fault tolerant layered design [12]
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Background (Cont.)

● Fog-IoT-Cloud framework ensure faster processing 
and efficient resource management

● There is a lack of a combined efficient Master Fog 
node three-layer system and a resilient fault 
tolerance system

● Efficient resource utilization of three-layer 
architecture with fault tolerant Master Fog node IoT 
ecosystem is needed for seamless microservice 
execution. 10



Framework Design

● Our proposed framework has three layers:
○ IoT and end devices
○ Fog nodes
○ Cloud
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Framework Design (Cont.)

● First layer - IoT and end devices:
○ Consists of IoT and end devices
○ Each request goes through the Auth service and 

API gateway
○ Auth service authenticates the requests
○ API gateway routes the request to the 

corresponding citizen fog
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Framework Design (Cont.)

● Second layer – fog nodes:
○ Consists of two types of fog nodes – Master Fog 

and Citizen Fog
○ Cloud selects these master fogs from citizen 

fogs using master selection algorithm
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Framework Design (Cont.)

● Second layer – Master fog node:
○ Master fog nodes has three categories: Primary 

Master Fog, Secondary Master Fog, Tertiary 
Master Fog

○ Each master fog node has three components: 
Microservice Migration Handler, Master Fog 
Broadcaster, and Citizen Fog Health Status 
Table

○ Only one master fog is active at a time 14



Framework Design (Cont.)

● Second layer – Master fog node responsibilities:
○ Citizen fog orchestration
○ Request handling from citizen fogs and 

scheduling
○ Automatic application deployment
○ Citizen fog failure handling
○ Citizen fog health status management
○ Communication with the cloud and other master 

fogs to share state information 15



Framework Design (Cont.)

● Second layer – Citizen fog nodes:
○ Citizen fogs are the general-purpose fog nodes
○ Microservices run in citizen fogs
○ Citizen fog has two components: Request 

Scheduler and Request Router
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Framework Design (Cont.)

● Third layer – Cloud:
○ The Cloud application is responsible for 

selecting the master fogs in two scenarios: 
setting up the framework initially, when all 
three types of master fogs are unresponsive

○ Cloud receives the alive signals from all the 
master fogs at a regular interval
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System Design and Modeling

● Master Fog Selection Process:
○ Master fog is selected from eligible citizen fogs
○ To be eligible as a master fog, the citizen fog 

must migrate its existing microservices
○ The weight of master fog selection criteria 

changes dynamically based on system status 
and fog node priority
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Table 1: Master fog selection criteria
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System Design and Modeling (Cont.)

● Master Fog Selection Process - Exception Criteria:
○ Fog nodes dedicated to perform critical tasks
○ Fog nodes with authorization service
○ For nodes performing any prioritized service
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System Design and Modeling (Cont.)

● Master Fog Selector:
○ The cloud component, Master Fog Selector 

executes Master Fog Selection algorithm
○ Calculates weighted points for citizen fogs
○ Declares the citizen fog with the by descending 

scores as the primary master fog, secondary 
master fog, and tertiary master fog

○ Stores citizen fogs health status information
21



Table 2: List of notations used in algorithms
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Algorithm 1: Master Fog Selection Algorithm
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System Design and Modeling (Cont.)

● Master Fog’s Fault Tolerant Scenarios:
○ Scenario 1: Everything is working fine
○ Scenario 2: Primary master fog is unavailable
○ Scenario 3: Both the primary and secondary 

master fog are unavailable
○ Scenario 4: All three master fogs are 

unavailable
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System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 1 - Everything is 
working fine:
○ The best-case scenario
○ The primary master fog is responding correctly
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System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 2 - Primary master fog is 
unavailable:
○ Primary master fog broadcasts alive signals to 

all master fogs and cloud
○ If the secondary master fog does not receive 

three consecutive signals from primary master 
fog, it declares itself as the primary master fog

○ To avoid multiple master fog ambiguity, the 
cloud synchronizes with all master fogs 26



Algorithm 2: Master Fog Fault Tolerant Sc 2 - PMF Failed
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System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 3 - Both the primary and 
secondary master fog are unavailable:
○ Tertiary master fog gets activated
○ Synchronizes with the cloud master fog selector
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Algorithm 3: Master Fog Fault Tolerant Sc 3-PMF, SMF Failed
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System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 4 - All three master fogs 
are unavailable:
○ The cloud handles this disaster scenario
○ If it does not receive any signal from any of the 

master fogs for three consecutive times, it 
pings them

○ If no master fog responds back, the cloud starts 
the master selection procedure from the rest of 
the citizen fogs 30



Algorithm 4: Master Fog Fault Tolerant Sc 4-All MF Failed
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Table 3: List of model notations
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System Design and Modeling (Cont.)

● Model:
○ Set if resource parameters:

○ Set of positive and negative parameters:
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System Design and Modeling (Cont.)

● Model (cont.):
○ Positive point factor for each parameter:

○ Positive point factor for each parameter:
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System Design and Modeling (Cont.)

● Model (cont.):
○ Weighted sum of the points:

○ Weighted point factor for each node:
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Framework Implementation

● Raspberry Pi 400, Raspberry Pi 4 B 8GB, Raspberry 
Pi 4 B, and Raspberry Pi 3 B+ were used as master 
and citizen fogs

● The cloud applications were deployed in Amazon 
Web Services

● Fog devices were interconnected using a singular 
network and use MQTT protocol

● RESTful API were used to connect the fog nodes 
with cloud applications over HTTPS protocol 36



Framework Implementation (Cont.)

● Every inbound request was filtered and authorized 
by the Auth Service and the API gateway

● The microservices were deployed in the citizen 
fogs while the master fog maintained the citizen 
fogs health status in real-time 
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Results

● The implemented framework is evaluated for a set 
of fog devices with different hardware 
configurations which are connected to a single 
network. 

● The network is immobile
● The citizen fog health status reports were synced 

with the cloud application for ensuring fault 
tolerance
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Results (Cont.)

● RO1 - To select contingent master fog nodes based 
on a periodic computational resource capacity  
estimation strategy in Fog-IoT ecosystems:
○ Stores the snapshots of all fog devices' health 

statuses
○ Health statuses are synchronized with the 

master fog and the cloud application at a 
regular interval
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Results (Cont.)

● RO1 (Cont.):  
○ The framework analyzes each fog node's score 

whenever at master fog selection process
○ The score was calculated from the last thirty 

snapshots of data from each fog node
○ The scoring weight was collected from the 

configuration file at run time, and it could be 
modified based on the system requirements
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Results (Cont.)

● RO2 - To prepare contingent master fog nodes for 
efficient enactment of master fog reallocation 
when a failure occurs:  
○ The framework's fault tolerance are assessed 

for all four scenarios
○ The fault tolerance of any master fog node 

occurrences is only considered 
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Results (Cont.)

● RO2 (Cont.):  
○ Time vs aggregated CPU usages percentages 

and time vs aggregated memory usages of the 
Kubernetes edge cluster are used as factors of 
fault tolerance evaluation
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Figure 2: Fault tolerance assessment for scenario 1 and 2
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Figure 3: Fault tolerance assessment for scenario 3 and 4
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Conclusion

● This research provides a fault-tolerant framework 
considering the initial concept of having a Master 
Fog node and its impact on Cloud Fog IoT eco 
systems for microservices execution

● Introduces a master fog selection process which is 
evaluated against several fault-tolerant scenarios 
and demonstrated the system's availability and 
seamless microservices execution in this 
framework, even in the event of a system failure 45
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