
A Resilient Fog-IoT Framework for
Seamless Microservice Execution

Presented by
Dr. Md Whaiduzzaman

Table of Contents

● Introduction
● Research Questions
● Our Contributions
● Background
● Framework Design
● System Design & Modeling
● Results
● Framework Implementation
● Conclusion

2

Introduction

● Fog computing brings enterprise systems closer to
the cloud [1, 2, 3]

● Layered architecture of the IoT-Fog-Cloud
ecosystem performs efficient application
execution [4, 5]

● Master-worker framework is introduced to
accelerate the efficiency of the system [6]

3

Introduction (cont.)

● Recent trends include growing interest in using
microservice architecture to address Fault
Tolerance in IoT ecosystem [7]

● A fault tolerance mechanism to protect the
essential master fog node is needed to avoid a
single point of failure for microservice based
architecture

4

Research Objectives

● RO1: To select contingent master fog nodes based
on a periodic computational resource capacity
estimation strategy in Fog-IoT ecosystems

● RO2: To prepare contingent master fog nodes for
efficient enactment of master fog reallocation
when a failure occurs

5

Our Contributions

● We design a resilient master fog node selection
process that provides seamless execution in a fog-
IoT ecosystem

● We implement our developed master fog selection
algorithm that ensures uninterrupted services in
the case of master fog node failure

● We experiment with practical data and validate
that our system can run smoothly and seamlessly
in a fault-tolerant environment 6

Figure 1: Overview of our Fault Tolerant Framework
7

Background

● A fault-tolerant architecture for IoT applications
that uses master-citizen orchestration was
proposed [6]

● Reduced Variable Neighborhood Search (RVNS)-
based framework was introduced for fault-tolerant
data transmission [8]

● A framework based on microservice architecture
providing reactive and proactive fault tolerant
support was developed [9] 8

Background (Cont.)

● An architecture distributed over four levels (cloud-
fog-mist-dew) was introduced based on IoT
device’s processing power and distance [10]

● Issues of reliability and fault tolerance in IoT based
smart cities were investigated [11]

● IoT-Edge-Cloud federation architecture for multi-
cluster IoT applications was developed by adapting
Cloud-Edge-IoT fault tolerant layered design [12]

9

Background (Cont.)

● Fog-IoT-Cloud framework ensure faster processing
and efficient resource management

● There is a lack of a combined efficient Master Fog
node three-layer system and a resilient fault
tolerance system

● Efficient resource utilization of three-layer
architecture with fault tolerant Master Fog node IoT
ecosystem is needed for seamless microservice
execution. 10

Framework Design

● Our proposed framework has three layers:
○ IoT and end devices
○ Fog nodes
○ Cloud

11

Framework Design (Cont.)

● First layer - IoT and end devices:
○ Consists of IoT and end devices
○ Each request goes through the Auth service and

API gateway
○ Auth service authenticates the requests
○ API gateway routes the request to the

corresponding citizen fog

12

Framework Design (Cont.)

● Second layer – fog nodes:
○ Consists of two types of fog nodes – Master Fog

and Citizen Fog
○ Cloud selects these master fogs from citizen

fogs using master selection algorithm

13

Framework Design (Cont.)

● Second layer – Master fog node:
○ Master fog nodes has three categories: Primary

Master Fog, Secondary Master Fog, Tertiary
Master Fog

○ Each master fog node has three components:
Microservice Migration Handler, Master Fog
Broadcaster, and Citizen Fog Health Status
Table

○ Only one master fog is active at a time 14

Framework Design (Cont.)

● Second layer – Master fog node responsibilities:
○ Citizen fog orchestration
○ Request handling from citizen fogs and

scheduling
○ Automatic application deployment
○ Citizen fog failure handling
○ Citizen fog health status management
○ Communication with the cloud and other master

fogs to share state information 15

Framework Design (Cont.)

● Second layer – Citizen fog nodes:
○ Citizen fogs are the general-purpose fog nodes
○ Microservices run in citizen fogs
○ Citizen fog has two components: Request

Scheduler and Request Router

16

Framework Design (Cont.)

● Third layer – Cloud:
○ The Cloud application is responsible for

selecting the master fogs in two scenarios:
setting up the framework initially, when all
three types of master fogs are unresponsive

○ Cloud receives the alive signals from all the
master fogs at a regular interval

17

System Design and Modeling

● Master Fog Selection Process:
○ Master fog is selected from eligible citizen fogs
○ To be eligible as a master fog, the citizen fog

must migrate its existing microservices
○ The weight of master fog selection criteria

changes dynamically based on system status
and fog node priority

18

Table 1: Master fog selection criteria
19

System Design and Modeling (Cont.)

● Master Fog Selection Process - Exception Criteria:
○ Fog nodes dedicated to perform critical tasks
○ Fog nodes with authorization service
○ For nodes performing any prioritized service

20

System Design and Modeling (Cont.)

● Master Fog Selector:
○ The cloud component, Master Fog Selector

executes Master Fog Selection algorithm
○ Calculates weighted points for citizen fogs
○ Declares the citizen fog with the by descending

scores as the primary master fog, secondary
master fog, and tertiary master fog

○ Stores citizen fogs health status information
21

Table 2: List of notations used in algorithms
22

Algorithm 1: Master Fog Selection Algorithm
23

System Design and Modeling (Cont.)

● Master Fog’s Fault Tolerant Scenarios:
○ Scenario 1: Everything is working fine
○ Scenario 2: Primary master fog is unavailable
○ Scenario 3: Both the primary and secondary

master fog are unavailable
○ Scenario 4: All three master fogs are

unavailable

24

System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 1 - Everything is
working fine:
○ The best-case scenario
○ The primary master fog is responding correctly

25

System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 2 - Primary master fog is
unavailable:
○ Primary master fog broadcasts alive signals to

all master fogs and cloud
○ If the secondary master fog does not receive

three consecutive signals from primary master
fog, it declares itself as the primary master fog

○ To avoid multiple master fog ambiguity, the
cloud synchronizes with all master fogs 26

Algorithm 2: Master Fog Fault Tolerant Sc 2 - PMF Failed
27

System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 3 - Both the primary and
secondary master fog are unavailable:
○ Tertiary master fog gets activated
○ Synchronizes with the cloud master fog selector

28

Algorithm 3: Master Fog Fault Tolerant Sc 3-PMF, SMF Failed
29

System Design and Modeling (Cont.)

● MF Fault Tolerant Scenario 4 - All three master fogs
are unavailable:
○ The cloud handles this disaster scenario
○ If it does not receive any signal from any of the

master fogs for three consecutive times, it
pings them

○ If no master fog responds back, the cloud starts
the master selection procedure from the rest of
the citizen fogs 30

Algorithm 4: Master Fog Fault Tolerant Sc 4-All MF Failed
31

Table 3: List of model notations
32

System Design and Modeling (Cont.)

● Model:
○ Set if resource parameters:

○ Set of positive and negative parameters:

33

System Design and Modeling (Cont.)

● Model (cont.):
○ Positive point factor for each parameter:

○ Positive point factor for each parameter:

34

System Design and Modeling (Cont.)

● Model (cont.):
○ Weighted sum of the points:

○ Weighted point factor for each node:

35

Framework Implementation

● Raspberry Pi 400, Raspberry Pi 4 B 8GB, Raspberry
Pi 4 B, and Raspberry Pi 3 B+ were used as master
and citizen fogs

● The cloud applications were deployed in Amazon
Web Services

● Fog devices were interconnected using a singular
network and use MQTT protocol

● RESTful API were used to connect the fog nodes
with cloud applications over HTTPS protocol 36

Framework Implementation (Cont.)

● Every inbound request was filtered and authorized
by the Auth Service and the API gateway

● The microservices were deployed in the citizen
fogs while the master fog maintained the citizen
fogs health status in real-time

37

Results

● The implemented framework is evaluated for a set
of fog devices with different hardware
configurations which are connected to a single
network.

● The network is immobile
● The citizen fog health status reports were synced

with the cloud application for ensuring fault
tolerance

38

Results (Cont.)

● RO1 - To select contingent master fog nodes based
on a periodic computational resource capacity
estimation strategy in Fog-IoT ecosystems:
○ Stores the snapshots of all fog devices' health

statuses
○ Health statuses are synchronized with the

master fog and the cloud application at a
regular interval

39

Results (Cont.)

● RO1 (Cont.):
○ The framework analyzes each fog node's score

whenever at master fog selection process
○ The score was calculated from the last thirty

snapshots of data from each fog node
○ The scoring weight was collected from the

configuration file at run time, and it could be
modified based on the system requirements

40

Results (Cont.)

● RO2 - To prepare contingent master fog nodes for
efficient enactment of master fog reallocation
when a failure occurs:
○ The framework's fault tolerance are assessed

for all four scenarios
○ The fault tolerance of any master fog node

occurrences is only considered

41

Results (Cont.)

● RO2 (Cont.):
○ Time vs aggregated CPU usages percentages

and time vs aggregated memory usages of the
Kubernetes edge cluster are used as factors of
fault tolerance evaluation

42

Figure 2: Fault tolerance assessment for scenario 1 and 2
43

Figure 3: Fault tolerance assessment for scenario 3 and 4
44

Conclusion

● This research provides a fault-tolerant framework
considering the initial concept of having a Master
Fog node and its impact on Cloud Fog IoT eco
systems for microservices execution

● Introduces a master fog selection process which is
evaluated against several fault-tolerant scenarios
and demonstrated the system's availability and
seamless microservices execution in this
framework, even in the event of a system failure 45

References

[1] Md Whaiduzzaman, Shelia Rahman Tuly, Nadia Haque, Md Razon Hossain,
Alistair Barros, et al. Credit based task scheduling process management in fog
computing. In PACIS, page 232, 2020.
[2] Ahmedur Rahman Shovon, Shanto Roy, Tanusree Sharma, and Md
Whaiduzzaman. A restful e-governance application framework for people identity
verification in cloud. In International Conference on Cloud Computing, pages 281–
294. Springer, 2018.
[3] Nishat Farjana, Shanto Roy, Md Julkar Nayeen Mahi, and Md Whaiduzzaman.
An identity-based encryption scheme for data security in fog computing. In
Proceedings of International Joint Conference on Computational Intelligence,
pages 215–226. Springer, 2020.

46

References (Cont)

[4] Md. Razon Hossain, Md. Whaiduzzaman, Alistair Barros, Shelia Rahman Tuly,
Md. Julkar Nayeen Mahi, Shanto Roy, Colin Fidge, and Rajkumar Buyya. A
scheduling-based dynamic fog computing framework for augmenting resource
utilization. Simulation Modelling Practice and Theory, page 102336, 2021.
[5] Shreshth Tuli, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya. Fogbus: A
blockchain-based lightweight framework for edge and fog computing. Journal of
Systems and Software, 154:22–36, 2019.
[6] Asad Javed, Keijo Heljanko, Andrea Buda, and Kary Framling. Cefiot: A fault
tolerant iot architecture for edge and cloud. In 2018 IEEE 4th world forum on
internet of things (WF-IoT), pages 813–818. IEEE, 2018.
[7] Mahyar Tourchi Moghaddam and Henry Muccini. Faulttolerant iot. In
International Workshop on Software Engineering for Resilient Systems, pages 67
84. Springer, 2019. 47

References (Cont)

[8] Kun Wang, Yun Shao, Lei Xie, Jie Wu, and Song Guo. Adaptive and fault
tolerant data processing in healthcare iot based on fog computing. IEEE
Transactions on Network Science and Engineering, 2018.
[9] Alexander Power and Gerald Kotonya. A microservices architecture for
reactive and proactive fault tolerance in iot systems. In 2018 IEEE 19th
International Symposium on” A World of Wireless, Mobile and Multimedia
Networks”(WoWMoM), pages 588–599. IEEE, 2018.
[10] Jitendcr Grover and Rama Murthy Garimella. Reliable and fault-tolerant iot
edge architecture. In 2018 IEEE SENSORS, pages 1–4. IEEE, 2018.

48

References (Cont)

[11] Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Towards fault tolerant
fog computing for iot-based smart city applications. In 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC), pages 0752–
0757. IEEE, 2019.
[12] Asad Javed, Jer´ emy Robert, Keijo Heljanko, and Kary ´ Framling. Iotef: A
federated edge-cloud architecture for ¨ fault-tolerant iot applications. Journal of
Grid Computing, pages 1–24, 2020.

49

THANK YOU

50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

